skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "van Koert, Otto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a contact-topological approach to the spatial circular restricted three-body problem, for energies below and slightly above the first critical energy value. We prove the existence of a circle family of global hypersurfaces of section for the regularized dynamics. Below the first critical value, these hypersurfaces are diffeomorphic to the unit disk cotangent bundle of the 2-sphere, and they carry symplectic forms on their interior, which are each deformation equivalent to the standard symplectic form. The boundary of the global hypersurface of section is an invariant set for the regularized dynamics that is equal to a level set of the Hamiltonian describing the regularized planar problem. The first return map is Hamiltonian, and restricts to the boundary as the time-1 map of a positive reparametrization of the Reeb flow in the planar problem. This construction holds for any choice of mass ratio, and is therefore non-perturbative. We illustrate the technique in the completely integrable case of the rotating Kepler problem, where the return map can be studied explicitly. 
    more » « less
  2. In this paper, we study the limit behavior of a family of chords on compact energy hypersurfaces of a family of Hamiltonians. Under the assumption that the energy hypersurfaces are all of contact type, we give results on the Omega limit set of this family of chords. Roughly speaking, such a family must either end in a degeneracy, in which case it joins another family, or can be continued. This gives a Floer theoretic explanation of the behavior of certain families of symmetric periodic orbits in many well-known problems, including the restricted three-body problem. 
    more » « less